Building an Infrastructure to Support
Massive Computational Resource
Requirements

John J. Tran

Information Sciences Institute / USC
Marina del Rey, CA 90292

John J. Tran — University of Southern California — Los Angeles, CA

 Two Approaches

e Linux Clustering Solution
e Specialized Hardware

* Motivation

* Background

* Findings & Results

* Applications to Computational Finance
* Forward and future thoughts

John J. Tran — University of Southern California — Los Angeles, CA

Dual-Approach

* Scaling computing resources by increasing cluster size
* Homogeneous cluster in heterogeneous environment

 Meeting all requirements of distributed, high performance,
and scalable computing

* Secret Ingredient is virtual machines (VM)

 Use commodity computation accelerators (when possible)
 GPGPU or general purpose graphics processing unit
e SIMD architecture — massively parallel

 Readily available — not so easy to program BUT performance is
virtually unlimited

John J. Tran — University of Southern California — Los Angeles, CA

Approach #1

John J. Tran — University of Southern California — Los Angeles, CA

* Flexible development and deployment
— Multiple OS’s, multiple platforms

* Uniformity across clusters or clouds of computers
— Thin host = Fat guest

* Reduce costs and overhead
— Support and maintenance
— Upgrade is a breeze

* Improvements to security?
— Really needs to be carefully studied and analyzed...
— Isolation is certainly there

John J. Tran — University of Southern California — Los Angeles, CA

Virtualization Defined

 From Wikipedia

Virtualization is a broad term that refers to the abstraction of computer
resources.

One useful definition is "a technique for hiding the physical
characteristics of computing resources from the way in which other
systems, applications, or end users interact with those resources. This
includes making a single physical resource (such as a server, an
operating system, an application, or storage device) appear to function
as multiple logical resources; or it can include making multiple physical

resources (such as storage devices or servers) appear as a single logical
resource.”

* More practical definition:

— Computing paradigm letting users run multiple OS’s concurrently on
the same HW platform

— Virtualization is NOT emulation

John J. Tran — University of Southern California — Los Angeles, CA

Virtualization Hierarchy

Emulation or Simulation — virtual machine simulates the complete
hardware (PearPC)

Native virtualization or Full virtualization — simulates hardware to
allow guest OS to run in isolation on host machine

Hardware-enabled virtualization — machine-level hardware
enabled for virtualization (e.g. Parallels for Duo Core 2 Macs
running XP)

Partial virtualization — host machine simulates subset of hardware;
doles not allow for completely separate OS, but allows for process
isolation

Paravirtualization — Host OS does not simulate hardware; guest OS
is “severely” modified to make hypervisor calls to access the HW

Operating System-level virtualization — analogue to chroot
environment, but guest & host OS share the same OS

Application Virtualization — application OS environment that lives
inside the host OS (JVM)

John J. Tran — University of Southern California — Los Angeles, CA

Applications of Virtualization

* Server Consolidation
* Disaster recovery

e Testing and Training

* Portable Application

* Portable Workspace
— Appliance — case study

John J. Tran — University of Southern California — Los Angeles, CA

Virtualization in Action

Cloud Computing

A

Cluster 1 Cluster 2 Cluster 3

Customers

* Build VMware appliance

* Ship appliance to cluster

* Appliance is checked and queued

* Run appliance in hosted environment

—————— 1 -
Fedora SUSE RedHat
IBM Linux DELL
Networx

Thin Linux VM HOSTs
Cluster environment can be heterogeneous
But common HOST software, e.g. VMware

John J. Tran — University of Southern California — Los Angeles, CA

Existing Virtualization Technologies

e Xen — open source virtualization platform
 VMware — commercial powerhouse*
* Parallels — desktop virtualization vendor (Macs only)

* VirtualBox —open source virtualization platform (Macs,
Windows, Linux & Solaris)

 Microsoft Virtualization - Windows-based virtualization
solution

John J. Tran — University of Southern California — Los Angeles, CA

Benefits and Drawbacks

* Benefits
— Flexibility and Agile computing strategy

— Scalable: from one desktop to huge clusters (hundreds if
not thousands of nodes)

— Can be very affordable: Xen & OpenBox are open-source
* Drawbacks
— Performance penalty

— Scalable — management procedures not well-defined
— Can be expensive: VMware is S

John J. Tran — University of Southern California — Los Angeles, CA

Preliminary Performance Analysis

 PurelO, CPU benchmark
— Classic Byte Benchmark (pure CPU)
— Intel IO meter software test
 Hardware Platform for Real and Virtual Cluster
— HP NetServer LPR 550 & 600 Mhz P3
— 512MB memory
— 2 x9.1 SCSI disk
— 10 nodes: node00..node10 non-virtual (also host OS) nodes
— 10 nodes: nodell..node20 virtual nodes

John J. Tran — University of Southern California — Los Angeles, CA

CPU benchmark

e Using the BYTE Benchmark
— Well-studied and tested synthetic performance
analysis tool
m Non-virtual node (iterations/sec) m Virtual node (iterations/sec)

CONumeric Sort 247.28 CONumeric Sort 224.8
[IString Sort 26.217 [IString Sort 23.954
OBitfield 9.949E7 OBitfield 9.145E7
COFP Emulation 35.315 COFP Emulation 32.802
CIFourier 5854.8 CIFourier 5532.6
COIDEA 1098.3 CIDEA 1012.4
OHuffman 359.2 OHuffman 330.4
CONeural Net 6.8261 CONeural Net 6.2402
LU Decomposition 212.72 [OLU Decomposition 187.29

John J. Tran — University of Southern California — Los Angeles, CA

Network |O Comparisons

 Network IO — using simple ping program

— ping -c10 -s 1024 from virtual to virtual node

* rtt min/avg/max/mdev =1.426/2.536/3.442/0.581 ms
— ping -c10 -s 1024 from real to virtual node

* rtt min/avg/max/mdev = 1.249/1.868/2.494/0.552 ms
— ping -c10 -s 1024 from real to real node

* rtt min/avg/max/mdev =0.692/1.319/1.753/0.511 ms

— ping -c10 -s 65507 from virtual to virtual node

* rtt min/avg/max/mdev = 16.071/21.537/43.094/8.225 ms
— ping -c10 -s 65506 from real to virtual node

* rtt min/avg/max/mdev = 15.527/16.490/19.580/1.073 ms
— ping -c10 -s 65507 from real to real node

* rtt min/avg/max/mdev = 12.877/13.855/14.485/0.513 ms

John J. Tran — University of Southern California — Los Angeles, CA

25

20

15

10

Average Ping Time (ms)

537

\G*W\G 13.855

Virtual to Virtual Real to Virtual

=0=b=1024k ===b=65507k

John J. Tran — University of Southern California — Los Angeles, CA

Real to Real

Disk IO Comparisons

* Numerical results (Mb/s)

— 100% Write

* Host OS 4k/32k => 0.62837/4.216848
+ Virtual OS 4k/32k => 0.441583/2.404602

— 75% Write

* Host OS 4k/32k => 0.694418/3.75723
+ Virtual OS 4k/32k => 0.434743/1.5625

— 0% Write
* Host OS 4k/32k => 13.16839/25.04023
* Virtual OS 4k/32k => 4.290378/21.9113
* As expected, read operations are must better than writes

 Interesting to see that mixing reads and writes (75% write)
yields worst performance than all writes (100% write)

* For large block sizes relative differences between real and
virtual diminish

John J. Tran — University of Southern California — Los Angeles, CA

Disk 10 Metrics (Mb/s)

25 -

15 -

bs=4k real bs=32k real bs=4k virtual bs=32k virtual

“ 0% write = 75% write 100% write

John J. Tran — University of Southern California — Los Angeles, CA

Approach #2

John J. Tran — University of Southern California — Los Angeles, CA

GPGPU Accelerator

GPU performance can be 100x host performance. This

differential is expected to grow

Line of Sight (LOS) and Route Finding algorithms identified by

Dinesh Manocha (UNC) and others

ISI performed experiments to quantify CPU intensive

algorithms as candidates for conversion to GPU

- Measured performance of Line of Sight (LOS) and Route
Finding algorithms

- Preliminary work on route finding

Candidate algorithms use large amount of time in small

amount of code to enable conversion — Most bang for the

buck!

John J. Tran — University of Southern California — Los Angeles, CA

NVIDIA GPU

e Similar to CELL processor and other GPU’s

* Hundreds of GIGAFLOPS single precision performance. Up
to 100X speedup over host

* Performance differential expected to continue to grow
* Efficient libraries for linear algebra, FFT
* Supports CUDA

John J. Tran — University of Southern California — Los Angeles, CA

NVIDIA GPU Architecture

* Each GPU device has N
multiprocessors

e Each multiprocessor has M
processors

* Each processor has its own
registers

* Processorsin the same
multiprocessor have access
to shared memory

John J. Tran — University of Southern California — Los Angeles, CA

Memory Hierarchy

Grid A grid is a collection of
Block (0, 0) Block (1, 0) blocks

| |

‘ Thread (0, 0) Thread (1, 0)

= =

A block s a collection of
threads on the same

F multiprocessor

‘ * Each thread on the same
Thread (0, 0) Thread (1, 0) .
processor has its own
register and local memory
* Threads on the same
- processor share “Shared
Memory”

e Threads on the same
device share “Global
Memory”

John J. Tran — University of Southern California — Los Angeles, CA

Host/Device Program Mapping

. Device * Each “kernel” is a GPU
e “program”
g S e R A program on a host can
e have multiple kernels
L] i * Cannot have multiple
o programs on the host

— ___.{ I { sharing GPU at the same
' I time
* All programs access GPU
by: (1) copy data from host
to GPU (2) execute
program on GPU, (3) copy
data back to host

John J. Tran — University of Southern California — Los Angeles, CA

CUDA

* Programming on the GPU = SIMD programming
— Same instruction on massively parallel data

* High level language supported by NVIDIA for current and
future architectures

* No need to hand code low level language and rewrite every
few years

* C language with GPU specific extensions
* Don’t use OpenGL

John J. Tran — University of Southern California — Los Angeles, CA

Case Study: Road Networks

Fle Edt Scals Feslus Foce ShowAs Specal Dislay Creale Tools Windows Views HHous Piiiege Holp [Fals 700 [1asia0oio0 s
i T 07,
o |
12,50

B[X =2 2h =R BB

EICEE L T eIe e = I

=}

0 can S -
St R 5 o8 =

il
Oho 0 = , -
o] Ell)

- 0ol
o ﬁ B

en area | peivezers fioenaacue

« Complex urban setting
 Dense road networks

John J. Tran — University of Southern California — Los Angeles, CA

Map Problem to Graph Theory

Network of roads = nodes and edges

John J. Tran — University of Southern California — Los Angeles, CA

Graph Problem Classification

Algorithm Properties
Models Implementation | Connectivity Graph Storage Size O(Time
Model Complexity)
A* Serial Priority Queue NA2 N log N
MM Serial & Parallel | Adjacency Matrix NA2 NA3 log N
FW Serial & Parallel | Adjacency Matrix NA2 NA3
SSSP Parallel Adjacency List NA2 N log N
ASSP Parallel Adjacency List NA2 * M NA2 log N

John J. Tran — University of Southern California — Los Angeles, CA

GPU vs. Non-GPU Timing

1 2 T T T I I | I 1

- = =CPU time i ’

- . . / -
L GPU time : ’

time (ms)
D
|

0 | | 1 | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

number of nodes x 10°

John J. Tran — University of Southern California — Los Angeles, CA

Lessons Learned

Practical

Performance

GPU — Not practical

GPU - O(N~3)/C

All-to-All (ASSP)

N is capped at 20k C=128
All-to-All (MM) _
CPU — Not practical CPU — (N~3)/C
N is capped at 20k C=4
GPU — Practical N log(N)/C
N is 1 Million C=128
One-to-All (SSSP))
CPU — Practical N log(N)/C
N is 1 Million C=4
GPU = yes practical GPU - N*2 log(N)/C
N=1M * # GPU C = number of cores * 128

CPU = yes not efficient
however

CPU — N”2 log(N)/C
C = number of cores

John J. Tran — University of Southern California — Los Angeles, CA

Application to CF

i

Cloud Computing

Cluster 1

Fedora
IBM

Cluster 2

SUSE
Linux
Networx

Cluster 3

RedHat
DELL

Funds Manager

* Build VMware appliance

* Ship appliance to cluster

* Appliance is checked and queued

* Run appliance in hosted environment

John J. Tran — University of Southern California — Los Angeles, CA

Application to CF

Graph Network Problem

Z

n Levels
27M(n+1) -1

N-path Binomial Tree Option

John J. Tran — University of Southern California — Los Angeles, CA

Uncharted Areas (future work)

 Approach #1
— Xen virtualization
— Security: defining policy and implications
— Policy setting
* Rules of engagement

— Metrics of success
* Transition from utilization & performance to broader customer base

— Licensing issues — the case of Microsoft (or possibly Apple)

 Approach #2

— Port CF algorithms to GPU
* BM, BS and other Options Model

— Provide generic programming interface accessible for all programming
platforms

John J. Tran — University of Southern California — Los Angeles, CA

Acknowledgments

* Information Sciences Institute (ISI)

— Gene Wagenbreth, Bob Lucas, Dan Davis, & Ke-Thia Yao
e University of Southern California (USC)

— Chris Mattmann

* Jet Propulsion Laboratory (JPL)
— Dan Crichton & Dana Freeborn

* IBM
— John Doppke

John J. Tran — University of Southern California — Los Angeles, CA

