
John J. Tran – University of Southern California – Los Angeles, CA 

Building an Infrastructure to Support 
Massive ComputaBonal Resource 

Requirements 

John J. Tran 
InformaBon Sciences InsBtute / USC 

Marina del Rey, CA 90292 



John J. Tran – University of Southern California – Los Angeles, CA 

Agenda 

•  Two Approaches 
•  Linux Clustering SoluBon 
•  Specialized Hardware 

•  MoBvaBon 
•  Background 
•  Findings & Results 
•  ApplicaBons to ComputaBonal Finance 
•  Forward and future thoughts 



John J. Tran – University of Southern California – Los Angeles, CA 

Dual‐Approach 

•  Scaling compuBng resources by increasing cluster size 
•  Homogeneous cluster in heterogeneous environment 
•  MeeBng all requirements of distributed, high performance, 

and scalable compuBng 

•  Secret Ingredient is virtual machines (VM) 

•  Use commodity computaBon accelerators (when possible) 
•  GPGPU or general purpose graphics processing unit 
•  SIMD architecture – massively parallel 

•  Readily available – not so easy to program BUT performance is 
virtually unlimited 



John J. Tran – University of Southern California – Los Angeles, CA 

Approach #1 



John J. Tran – University of Southern California – Los Angeles, CA 

MoBvaBon 

•  Flexible development and deployment 
–  MulBple OS’s, mulBple pla\orms 

•  Uniformity across clusters or clouds of computers 
–  Thin host  Fat guest 

•  Reduce costs and overhead 
–  Support and maintenance 

–  Upgrade is a breeze 
•  Improvements to security? 

–  Really needs to be carefully studied and analyzed… 
–  IsolaBon is certainly there 



John J. Tran – University of Southern California – Los Angeles, CA 

VirtualizaBon Defined 

•  From Wikipedia 
VirtualizaBon is a broad term that refers to the abstracBon of computer 

resources.  

One useful definiBon is "a technique for hiding the physical 
characterisBcs of compuBng resources from the way in which other 
systems, applicaBons, or end users interact with those resources. This 
includes making a single physical resource (such as a server, an 
operaBng system, an applicaBon, or storage device) appear to funcBon 
as mulBple logical resources; or it can include making mulBple physical 
resources (such as storage devices or servers) appear as a single logical 
resource.” 

•  More pracBcal definiBon: 
–  CompuBng paradigm ledng users run mulBple OS’s concurrently on 

the same HW pla\orm 
–  VirtualizaBon is NOT emulaBon 



John J. Tran – University of Southern California – Los Angeles, CA 

VirtualizaBon Hierarchy 

•  Emula&on or Simula&on – virtual machine simulates the complete 
hardware (PearPC) 

•  Na&ve virtualiza&on or Full virtualiza&on – simulates hardware to 
allow guest OS to run in isolaBon on host machine 

•  Hardware‐enabled virtualiza&on – machine‐level hardware 
enabled for virtualizaBon (e.g. Parallels for Duo Core 2 Macs 
running XP) 

•  Par&al virtualiza&on – host machine simulates subset of hardware; 
does not allow for completely separate OS, but allows for process 
isolaBon 

•  Paravirtualiza&on – Host OS does not simulate hardware; guest OS 
is “severely” modified to make hypervisor calls to access the HW 

•  Opera&ng System‐level virtualiza&on – analogue to chroot 
environment, but guest & host OS share the same OS 

•  Applica&on Virtualiza&on – applicaBon OS environment that lives 
inside the host OS (JVM) 



John J. Tran – University of Southern California – Los Angeles, CA 

ApplicaBons of VirtualizaBon 

•  Server ConsolidaBon 
•  Disaster recovery 
•  TesBng and Training 
•  Portable ApplicaBon 
•  Portable Workspace 

–  Appliance – case study 



John J. Tran – University of Southern California – Los Angeles, CA 

VirtualizaBon in AcBon 

Cluster 1  Cluster 2  Cluster 3 

Fedora  SUSE  RedHat 
IBM  Linux 

Networx 
DELL 

Customers 
* Build VMware appliance 
* Ship appliance to cluster 
* Appliance is checked and queued 
* Run appliance in hosted environment 

Thin Linux VM HOSTs  
Cluster environment can be heterogeneous 
But common HOST solware, e.g. VMware 

Cloud CompuBng 



John J. Tran – University of Southern California – Los Angeles, CA 

ExisBng VirtualizaBon Technologies 

•  Xen – open source virtualizaBon pla\orm 

•  VMware – commercial powerhouse* 
•  Parallels – desktop virtualizaBon vendor (Macs only) 

•  VirtualBox – open source virtualizaBon pla\orm (Macs, 
Windows, Linux  & Solaris) 

•  Microsol VirtualizaBon ‐ Windows‐based virtualizaBon 
soluBon 



John J. Tran – University of Southern California – Los Angeles, CA 

Benefits and Drawbacks 

•  Benefits 
–  Flexibility and Agile compuBng strategy 
–  Scalable: from one desktop to huge clusters (hundreds if 
not thousands of nodes) 

–  Can be very affordable: Xen & OpenBox are open‐source 
•  Drawbacks 

–  Performance penalty 

–  Scalable – management procedures not well‐defined 
–  Can be expensive: VMware is $$ 



John J. Tran – University of Southern California – Los Angeles, CA 

Preliminary Performance Analysis 

•  Pure IO, CPU benchmark 
–  Classic Byte Benchmark (pure CPU) 
–  Intel IO meter solware test 

•  Hardware Pla\orm for Real and Virtual Cluster 
–  HP NetServer LPR 550 & 600 Mhz P3 
–  512MB memory 
–  2 x 9.1 SCSI disk 
–  10 nodes: node00..node10 non‐virtual (also host OS) nodes 
–  10 nodes: node11..node20 virtual nodes 



John J. Tran – University of Southern California – Los Angeles, CA 

CPU benchmark 

•  Using the BYTE Benchmark 
– Well‐studied and tested syntheBc performance 
analysis tool 

  Non‐virtual node (iteraBons/sec) 
 Numeric Sort    247.28 
 String Sort      26.217 
 Bi\ield        9.949E7 
 FP EmulaBon    35.315 
 Fourier        5854.8 
 IDEA        1098.3 
 Huffman      359.2 
 Neural Net      6.8261 
 LU DecomposiBon  212.72 

  Virtual node (iteraBons/sec) 
 Numeric Sort    224.8 
 String Sort      23.954 
 Bi\ield        9.145E7 
 FP EmulaBon    32.802 
 Fourier        5532.6 
 IDEA        1012.4 
 Huffman      330.4 
 Neural Net      6.2402 
 LU DecomposiBon  187.29 



John J. Tran – University of Southern California – Los Angeles, CA 

Network IO Comparisons 

•  Network IO – using simple ping program 

–  ping ‐c10 ‐s 1024 from virtual to virtual node 
•  ru min/avg/max/mdev = 1.426/2.536/3.442/0.581 ms 

–  ping ‐c10 ‐s 1024 from real to virtual node 
•  ru min/avg/max/mdev = 1.249/1.868/2.494/0.552 ms 

–  ping ‐c10 ‐s 1024 from real to real node 
•  ru min/avg/max/mdev = 0.692/1.319/1.753/0.511 ms 

–  ping ‐c10 ‐s 65507 from virtual to virtual node 
•  ru min/avg/max/mdev = 16.071/21.537/43.094/8.225 ms 

–  ping ‐c10 ‐s 65506 from real to virtual node 
•  ru min/avg/max/mdev = 15.527/16.490/19.580/1.073 ms 

–  ping ‐c10 ‐s 65507 from real to real node 
•  ru min/avg/max/mdev = 12.877/13.855/14.485/0.513 ms 



John J. Tran – University of Southern California – Los Angeles, CA 

Average Ping Time (ms) 

2.536  1.868  1.319 

21.537 

16.49 

13.855 

0 

5 

10 

15 

20 

25 

Virtual to Virtual  Real to Virtual  Real to Real 

b=1024k  b=65507k 



John J. Tran – University of Southern California – Los Angeles, CA 

Disk IO Comparisons 

•  Numerical results (Mb/s)

–  100% Write


•  Host OS 4k/32k => 0.62837/4.216848

•  Virtual OS 4k/32k => 0.441583/2.404602


–  75% Write

•  Host OS 4k/32k => 0.694418/3.75723

•  Virtual OS 4k/32k => 0.434743/1.5625


–  0% Write

•  Host OS 4k/32k => 13.16839/25.04023

•  Virtual OS 4k/32k => 4.290378/21.9113


•  As expected, read operations are must better than writes

•  Interesting to see that mixing reads and writes (75% write) 

yields worst performance than all writes (100% write)

•  For large block sizes relative differences between real and 

virtual diminish




John J. Tran – University of Southern California – Los Angeles, CA 

Disk IO Metrics (Mb/s) 

0 

5 

10 

15 

20 

25 

30 

bs=4k real  bs=32k real  bs=4k virtual  bs=32k virtual 

0% write  75% write  100% write 



John J. Tran – University of Southern California – Los Angeles, CA 

Approach #2 



John J. Tran – University of Southern California – Los Angeles, CA 

GPGPU Accelerator 

•  GPU performance can be 100x host performance. This 
differenBal is expected to grow 

•  Line of Sight (LOS) and Route Finding algorithms idenBfied by 
Dinesh Manocha (UNC) and others 

•  ISI performed experiments to quanBfy CPU intensive 
algorithms as candidates for conversion to GPU 
‐  Measured performance of Line of Sight (LOS) and Route 

Finding algorithms 
‐  Preliminary work on route finding 

•  Candidate algorithms use large amount of Bme in small 
amount of code to enable conversion – Most bang for the 
buck! 



John J. Tran – University of Southern California – Los Angeles, CA 

NVIDIA GPU 

•  Similar to CELL processor and other GPU’s 
•  Hundreds of GIGAFLOPS single precision performance. Up 

to 100X speedup over host 
•  Performance differenBal expected to conBnue to grow 
•  Efficient libraries for linear algebra, FFT 
•  Supports CUDA 



John J. Tran – University of Southern California – Los Angeles, CA 

•  Each GPU device has N 
mulBprocessors 

•  Each mulBprocessor has M 
processors  

•  Each processor has its own 
registers 

•  Processors in the same 
mulBprocessor have access 
to shared memory 

NVIDIA GPU Architecture 



John J. Tran – University of Southern California – Los Angeles, CA 

Memory Hierarchy 

•  A grid is a collecBon of 
blocks 

•  A block is a collecBon of 
threads on the same 
mulBprocessor 

•  Each thread on the same 
processor has its own 
register and local memory 

•  Threads on the same 
processor share “Shared 
Memory” 

•  Threads on the same 
device share “Global 
Memory” 



John J. Tran – University of Southern California – Los Angeles, CA 

Host/Device Program Mapping 

•  Each “kernel” is a GPU 
“program” 

•  A program on a host can 
have mulBple kernels 

•  Cannot have mulBple 
programs on the host 
sharing GPU at the same 
Bme 

•  All programs access GPU 
by: (1) copy data from host 
to GPU (2) execute 
program on GPU, (3) copy 
data back to host 



John J. Tran – University of Southern California – Los Angeles, CA 

CUDA 

• Programming on the GPU = SIMD programming 
– Same instrucBon on massively parallel data 

• High level language supported by NVIDIA for current and 
future architectures 
• No need to hand code low level language and rewrite every 
few years 
• C language with GPU specific extensions 
• Don’t use OpenGL 



John J. Tran – University of Southern California – Los Angeles, CA 

Case Study: Road Networks 

•  Complex urban setting

•  Dense road networks




John J. Tran – University of Southern California – Los Angeles, CA 

Map Problem to Graph Theory 

 Network of roads = nodes and edges




John J. Tran – University of Southern California – Los Angeles, CA 

Graph Problem ClassificaBon 

Algorithm 
Models 

Proper&es 
Implementa&on 

Model  Connec&vity Graph  Storage Size  O(Time 
Complexity) 

A*  Serial  Priority Queue  N^2  N log N 
MM  Serial & Parallel  Adjacency Matrix  N^2  N^3 log N 
FW  Serial & Parallel  Adjacency Matrix  N^2  N^3 
SSSP  Parallel  Adjacency List  N^2  N log N 
ASSP  Parallel  Adjacency List  N^2 * M  N^2 log N 



John J. Tran – University of Southern California – Los Angeles, CA 

GPU vs. Non-GPU Timing




John J. Tran – University of Southern California – Los Angeles, CA 

Lessons Learned 

Prac&cal  Performance 

All‐to‐All (MM) 
GPU – Not pracBcal 
N is capped at 20k  GPU – O(N^3)/C  

C = 128 
CPU – Not pracBcal 
N is capped at 20k  CPU – (N^3)/C 

C = 4 

One‐to‐All (SSSP) 
GPU – PracBcal 
N is 1 Million  N log(N)/C 

C = 128 
CPU – PracBcal 
N is 1 Million  N log(N)/C 

C = 4 

All‐to‐All (ASSP) 
GPU = yes pracBcal 
N = 1M * # GPU  GPU ‐ N^2 log(N)/C 

C = number of cores * 128 
CPU = yes not efficient 
however  CPU – N^2 log(N)/C 

C = number of cores 



John J. Tran – University of Southern California – Los Angeles, CA 

ApplicaBon to CF 

Cluster 1  Cluster 2  Cluster 3 

Fedora  SUSE  RedHat 
IBM  Linux 

Networx 
DELL 

Funds Manager 
* Build VMware appliance 
* Ship appliance to cluster 
* Appliance is checked and queued 
* Run appliance in hosted environment 

Cloud CompuBng 

AnalyBc Model 
??? 
X = y^2 – z  



John J. Tran – University of Southern California – Los Angeles, CA 

ApplicaBon to CF 

Graph Network Problem 

N‐path Binomial Tree OpBons 

n Levels 
2^(n+1) ‐ 1 



John J. Tran – University of Southern California – Los Angeles, CA 

Uncharted Areas (future work) 

•  Approach #1 
–  Xen virtualizaBon 
–  Security: defining policy and implicaBons 
–  Policy sedng 

•  Rules of engagement 
–  Metrics of success 

•  TransiBon from uBlizaBon & performance to broader customer base 

–  Licensing issues – the case of Microsol (or possibly Apple) 

•  Approach #2 
–  Port CF algorithms to GPU 

•  BM, BS and other OpBons Model 

–  Provide generic programming interface accessible for all programming 
pla\orms 



John J. Tran – University of Southern California – Los Angeles, CA 

Acknowledgments 

•  InformaBon Sciences InsBtute (ISI) 
–  Gene Wagenbreth, Bob Lucas, Dan Davis, & Ke‐Thia Yao 

•  University of Southern California (USC) 
–  Chris Maumann 

•  Jet Propulsion Laboratory (JPL) 
–  Dan Crichton & Dana Freeborn 

•  IBM 
–  John Doppke 


