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Abstract

A distributed, parallel implementation of the widely
used Modular Semi-Automated Forces (ModSAF') Dis-
tributed Interactive Simulation (DIS) is presented,
with Scalable Parallel Processors (SPPs) used to simu-
late more than 50,000 individual vehicles. The single-
SPP code is portable and has been used on a variety
of different SPP architectures for simulations with up
to 15,000 vehicles. A general metacomputing frame-
work for DIS on multiple SPPs is discussed and results
are presented for an initial system using explicit Gate-
way processes to manage communications among the
SPPs. These 50K-vehicle simulations utilized 1,904
processors at six sites across seven time zones, includ-
ing platforms from three manufacturers. Ongoing ac-
tivities to both simplify and enhance the metacomput-
ing system using Globus are described.

1 The Large-Scale DIS Problem

Over the past few years, Distributed Interactive
Simulation (DIS) [1] has become an increasingly essen-
tial tool for training, system acquisition, test and eval-
uation within the Department of Defense. Key compo-
nents of DIS include: high-fidelity computer-simulated
individual entities (tanks, trucks, aircraft, ... ); inter-
actions among entities hosted on different computers
through network messages; and support for Human In
Loop (HIL) interactions. Using DIS, it is possible to
create large-scale virtual representations of real oper-
ational environments that are inexpensive enough to
be used repeatedly.

ModSAF is a particularly important example of
DIS which is routinely used for cost-effective training
throughout the armed forces. Generally, it is run us-
ing an ensemble of workstations communicating over a

network, typically a LAN. Each workstation is respon-
sible for simulating some modest number (30-100) of
entities. These computer-generated Semi-Automated
Forces (SAF) are intended to mimic realistically the
behaviors of opposing or support forces within an ex-
ercise. The entity and environment models are accord-
ingly quite detailed.

Individual simulators (workstations) interact
through the exchange of data messages called PDUs
(Protocol Data Units) [2]. These PDUs are used
in ModSAF to describe the state of individual enti-
ties, weapons firing, detonations, environmental phe-
nomenon, command and control orders, etc. In stan-
dard ModSAF, the PDUs are sent as UDP datagrams.
Due to this unreliable message-delivery mechanism,
each entity state PDU typically contains a complete
summary of the vehicle’s current state, and PDUs are
(re)transmitted at frequent, regular “heartbeat” inter-
vals to compensate for dropped data packets.

Independent of the nature of the PDU communi-
cations mechanism, this simplest picture of ModSAF
is not scalable in that it (implicitly) assumes each sim-
ulator receives and responds to all PDUs from all other
simulators—a model that clearly fails as the number of
simulators and simulated entities increases. Moreover,
in many realistic large scale simulations, it is invari-
ably the case that most system-wide PDU traffic is
irrelevant for the limited set of entities hosted on an
individual simulator (e.g., tanks separated by tens of
kilometers generally do not interact).

The DIS community encountered these issues in
their STOW-E exercise (Synthetic Theater of War-
Europe [3]) and ED-1A Engineering Demonstration
[4], in which ModSAF was used to simulate 5,371 ve-
hicles hosted at 12 separate sites in the USA and Eu-



rope. Increasing the simulated entity count could not
be achieved by simply adding more workstations to
the network. Addition of a PDU screening mechanism
(‘Interest Management’) helped but did not eliminate
all scaling hurdles.

This paper describes a new approach to truly
large-scale DIS, using multiple Scalable Parallel Pro-
cessors (SPPs) to solve the scaling problems observed
in STOW-E. After a short summary of project goals
and accomplishments in Sections 1.1 and 1.2, Section 2
presents the general method used for porting ModSAF
to run on an SPP. Sections 3-5 contain, respectively,
a (long-term) vision for an effective STOW metacom-
puting model, an analysis of initial multi-SPP Mod-
SAF accomplishments, and an overview of ongoing ac-
tivities to enhance and extend the existing software us-
ing elements from the Globus metacomputing toolkit
[7], [8]-

1.1 SF Express Project Overview

The Synthetic Forces Express project (SF Ex-
press) [9] began in 1996 to explore the utility of
Scalable Parallel Processors (SPPs) as a solution to
the communications bottlenecks of conventional Mod-
SAF. The SF Express team consists of researchers
from the California Institute of Technology (Cal-
tech), the Jet Propulsion Laboratory (JPL), and the
Space and Naval Warfare Systems Center San Diego
(SPAWARSYSCEN, formerly known as NRaD). The
SF Express charter was to demonstrate a scalable com-
munications architecture simulating 50K vehicles on
multiple SPPs—an order-of-magnitude increase over
the size of the STOW-E simulation.

SPPs provide a natural, attractive alternative to
networked workstations for large-scale ModSAF runs.
Most of the processors on an SPP can be devoted to
independent executions of “SAFSim,” the basic Mod-
SAF simulator code. The reliable high-speed commu-
nications fabric between processors on an SPP pro-
vides significantly increased bandwidth over standard
dataflows among networked workstations. A scalable
communications scheme was constructed in three main
steps:

Interest Specification Procedures: Individual
data messages were associated with specific inter-
est class indices, and procedures were developed
for evaluating the total interest state of an indi-
vidual simulation processor.

Intra-SPP Communications: Within an individ-
ual SPP, certain processors were designated as
message routers; the number of processors used
as routers can be selected for each run. These

processors receive and store interest declarations
from the simulator nodes and move simulation
data packets according to the interest declara-
tions.

Inter-SPP Communications: Additional interest-
restricted data exchange procedures were devel-
oped to support SF Express execution across mul-
tiple SPPs.

The primary technical challenge in porting Mod-
SAF to run efficiently on SPPs lies in construct-
ing a suitable network of message-passing router
nodes/processors. SF Express uses point-to-point SPP
communications (implemented using the MPI Message
Passing Interface [10]) to replace the UDP socket calls
of standard ModSAF. The network of routers man-
age SPP message traffic, effecting interest-restricted
communications among simulator nodes. This strat-
egy allows considerable freedom in constructing the
router node network. This paper describes a model
based on statically-allocated communication channels
among specific subsets of processors within an SPP.
This Router Network Architecture (RNA) was devel-
oped at Caltech [11],[12].

As the simulation problem size increases beyond
the capabilities of any single SPP, additional interest-
restricted communications procedures are needed to
enable “Metacomputed ModSAF” runs on multiple
SPPs. After a number of options were considered, an
implementation using dedicated Gateway processors
to manage inter-SPP communications was selected.

1.2 Simulations of 50K+ Vehicles

On 11 August 1997, the SF Express project per-
formed two separate simulation runs, each with more
than 50,000 individually simulated vehicles. The runs
used three different types of Scalable Parallel Proces-
sors (SPPs) at six separate sites spanning seven time
zones, as shown in Fig.(1). These sites were linked
by a variety of wide-area networks. Specifics for each
site are listed in Table 1. The majority of the SPPs
used the RNA communications scheme, while NASA
Ames and CEWES applied an alternative approach
developed at JPL [13].

The N(P) entries in the table indicate the number
of processors used at each site. The N(V'); columns in-
dicate the number of locally simulated vehicles in each
of the two runs. The 50K-vehicle simulation scenar-
ios were created by the ExInit software [14] and fea-
tured immediate intense interactions among the sim-
ulated entities, causing high communications levels
both within and among SPPs.
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Figure 1: SPP sites and message rates in the 50K SF Express runs

Table 1: Participating Sites and Simulated Entity Counts for the 50,000 Vehicle SF Express Runs

Site Hardware N(P) | N(V)1 N(V),
Caltech, Pasadena CA HP Exemplar | 256 | 13,095 12,182
ORNL, Oak Ridge TN Intel Paragon | 1024 | 16,695 15,996
NASA Ames CA IBM SP2 139 5,464 5,637
CEWES, Vicksburg MS IBM SP2 229 9,739 9,607
MHPCC, Maui HI IBM SP2 128 5,056 7,027
HP/Convex, Richardson TX | HP Exemplar | 128 5,348 6,733
Total 1,904 | 55,397 57,182
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Figure 2: Schematic illustration of a networked ModSAF simulator and notional mapping of the simulator tasks

onto an SPP

2 Porting ModSAF to a Scalable Par-
allel Processor
The basic strategy used in porting ModSAF to
an SPP is a heterogeneous assignment of tasks to pro-
cessors, as illustrated in Fig.(2). The processors are
divided into three classes:

Entity Simulators: Most of the SPP’s processors
execute a minimally modified version of SAFSim,
the standard simulator code.

Data Servers: A small number of nodes read and
store simulation data, forwarding it to the SAF-
Sim nodes through SPP messages.

Routers: The movement of data among the SAFSim
nodes is managed by a number of dedicated router
nodes. The broadcast or multicast socket calls of
standard ModSAF are replaced by point-to-point
communications directed by this router network.

Neither side of Fig.(2) is scalable without the
imposition of additional interest management logic,
which limits the number of incoming data for an in-
dividual SAFSim. Since interest management is an
active research area, it is important that the SPP im-
plementation not depend on specifics of any one inter-
est management scheme. RNA makes only two min-
imal assumptions in this regard: each PDU can be
associated with an interest value (an “interest class”),
and each SAFSim can compute its own interest state
(the set of all relevant interest values for locally sim-
ulated vehicles). The communications network must

deliver to the SAFSim only those PDUs that overlap
the SAFSim’s declared interest state.

2.1 The Router Network Architecture

The basic building block of Router Network Ar-
chitecture is a fixed set of SAFSim nodes communicat-
ing with single “Primary Router” node, as illustrated
in Fig.(3). There are only two essential modifications
to the standard ModSAF code, as run of the SAFSim
nodes of Fig.(3):

1. The usual (broadcast) network reads and writes in
the ModSAF network communications library are
replaced by SPP communications with the router
node.

2. Each SAFSim node periodically recomputes its
collective interest state (union of interest states
for all locally simulated vehicles) and sends this
information to its router.

The Primary Router in Fig.(3) receives and (tem-
porarily) stores PDUs and interest declarations from
the attached SAFSims and subsequently forwards
those PDUs that match the SAFSim interest states.
These tasks are implemented using three straightfor-
ward constructs:

1. A large circular buffer that stores active data el-
ements.

2. A client list that maintains the current interest
declaration of the individual attached SAFSims
and pointers to the next outgoing PDU for each
client.



Primary Router

i

e List of Clients

Interest Declaration
Last-Sent Datum Tag

* PDU Storage Area

SAFSim Nodes

Figure 3: A Primary Router with its associated SAFSims

3. A simple interest assessment function that deter-
mines whether a PDU matches a client’s declared
interest.

The Primary Router in Fig.(3) is a pure data server
that waits for and processes requests from SAFSim
clients. For efficiency, the actual data messages ex-
changed between SAFSims and Routers are PDU bun-
dles.

It has been found that a single Primary Router
can comfortably manage the communications for a set
of client SAFSims in Fig.(3) simulating 1K-2K total
vehicles. Multiple replicas of the Primary Router Clus-
ter are required once the overall simulation size ex-
ceeds this limit. In such cases, the basic unit of Fig.(3)
is first augmented by the addition of two new Router
nodes (referred to as “Pop-Up” and “Pull Down”).
This enhanced routing “triad” is replicated, and ad-
ditional communications links between Pop-Up and
Pull-Down routers are enabled, giving rise to the full
router network shown in Fig.(4).

Communications within the full architecture of
Fig.(4) are also straightforward. In addition to its
normal communications with the SAFSim nodes, each
Primary Router forwards all SAFSim PDUs to its as-
sociated Pop-Up Router and also sends its collective
interest state (the union of the SAFSim interest states)
to its Pull-Down Router. Each Pull-Down router sub-
sequently collects interest-filtered PDUs from the full
Pop-Up layer, and delivers these data to the Primary
Router. Message passing within the router network
follows a strict set of hierarchical rules. In particular,
all data exchanges are flow-controlled, being initiated
by small request packets sent from one node to a router
in a higher layer within Fig.(4). This approach is used
to prevent both communications deadlocks and the ar-
rival of large unanticipated messages that could exceed
available system buffer space.

The Pop-Up layer in Fig.(4) provides a distributed
repository for active messages within the simulation
(making the Pop-Ups a perfect place to attach data
loggers for subsequent replays or statistics gather-
ing). Note that the data collection activities of the
Pull-Down routers occur in parallel with the Primary
SAFSim communications. This parallelism minimizes
the additional time delays for PDUs that must travel
through the full router network.

2.2 Performance of the Single-SPP Mod-
SAF Implementation
Detailed studies of the RNA model are contained
in Refs.[11],[12]. Highlights of these analyses are as
follows:

1. The RNA approach has been run successfully on
a variety of SPP architectures, including the Intel
Paragon, IBM SP2, HP Exemplar, Silicon Graph-
ics Origin 2000, and “Beowulf” PC Cluster [15].

2. These single-SPP runs have included simulations
involving up to 18,000 vehicles.

3. The scaling behavior of RNA as problem size
increases is well-understood, with “theoretical”
expectations validated by the measured perfor-
mance results.

4. The effective inter-processor communications
within an SPP reduce PDU communication over-
head significantly for an individual SAFSim (rel-
ative to standard ModSAF performance on a
LAN/WAN network).

3 Anatomy of a DIS Metacomputer
“Metacomputing” can be defined as the concur-

rent use of multiple network-linked resources for solv-

ing very large computational problems. However,
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computing in networked environments has both ad-
vantages and drawbacks. The state and structure of
networked resources are often dynamic and quite het-
erogeneous. Performance and portability may be com-
promised when trying to deal with heterogeneity. Al-
ternatively, linking large numbers of diverse resources
allows access to processing power and unique capabil-
ities beyond the resources at any one site. It also en-
ables applications to be solved with a mix of systems,
assigning appropriate and available assets to specific
parts of the overall problem.

For many classes of large distributed applications,
the aggregate computational power in a collection of
SPPs is only part of the metacomputing solution. A
full system would link computational engines, storage
systems, scientific instruments, advanced display de-
vices, and human resources, as illustrated in Fig.(5),
with “HIL” representing some sort, of ‘Human In Loop’
interface and “Idesk” (“Immersa-desk”) representing a
typical advanced display device. Data may be gath-
ered from a remote source (for example, a satellite
downlink) and streamed into a collection of SPPs for
real-time simulation processing. During the course
of the simulation, mechanisms for logging, filtering,
or compressing data may be employed for subsequent
post-processing (e.g., visualization, querying, and per-
sistent storage).

Distributed heterogeneous computing immedi-
ately implies diversity in terms of hardware architec-
tures and performance, operating systems, administra-
tive domains, network protocols, etc. As the size and
complexity of the distributed system increases, opera-
tional issues (e.g., resource scheduling, allocation, and
data staging) become increasingly important compo-
nents of the metacomputing model.

The next two sections describe two initial steps to-
ward the seamless metacomputing picture of Fig.(5).
Section 4 presents the Gateway model used by the ini-
tial 50K-vehicle runs outlined in Table 1. Section 5
describes subsequent multi-SPP experiments to inte-
grate parts of the Globus metacomputing toolkit [7],

[8] in order to remove many operational difficulties en-
countered during initial large simulations.

4 SF Express on Multiple SPPs using

Explicit Gateways

For large runs on multiple SPPs, some portions
of the entity state information from each SPP will,
in general, be relevant for entities simulated on other
SPPs. Extensions of the single-SPP architecture
must effect interest-restricted PDU exchanges among
the SPPs. Dedicated Gateway processors provide a
straightforward mechanism for this task.

The Gateway processors are generalizations of the
intra-SPP routers from Section 2.1, and can be viewed
as communications servers for two distinct classes of
clients:

Local Clients: Router nodes on the same SPP as the
Gateway that hold the continually changing col-
lective PDU and Interest State of the local SPP.
Local Clients send (internal) interest declarations
and simulation data to the Gateway for subse-
quent delivery to remote resources.

External Clients: Processes on remote machines
that receive and process interest declarations and
PDU bundles from the local SPP. An external
client could be a standard ModSAF workstation
or GUI. For inter-SPP links, an External Client is
essentially a mirror image of a Local Client that
resides on the external SPP.

Gateways manage interest-selected data flow in
two directions by way of four basic operations:

1. The collective interest state of the Local SPP is
sent out to each of the external SPPs.

2. The corresponding interest declarations are re-
ceived from the remote SPPs, defining standard
client interests. The union of these external inter-
est states defines the collective (external) gateway
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interest, which is sent up to the local attached
routers.

3. The Gateway receives interest-screened data from
the local routers in the usual manner, and for-
wards these to the appropriate external hosts.

4. The Gateway receives data from the external
SPPs and sends it to the attached local routers
for subsequent distribution within the local SPP.

Aside from the fact that a Gateway node has two im-
portant global interest states (the attached SPP and
the external world), the overall operation of Gateways
is extremely similar to that of the router nodes from
Section 2.1.

4.1 Gateway Specifics for the Initial 50K-
Vehicle Runs
The first metacomputing experiments within the
SF Express project involved a number of simplify-
ing assumptions and restrictions on the nature of the
Gateway processes, in particular:

1. The communications network among the partici-
pating SPPs is implemented as a fully connected
set of links between pairs of SPPs, with each SPP
dedicating a Gateway processor for each external
SPP.

2. Messages between SPPs are sent as UDP/IP data-
grams.

3. Interest declaration messages are retransmitted at
regular intervals (“heartbeats”) to accommodate
the unreliable nature of the UDP messages.

In Fig.(6), the schematic diagram of the multi-SPP
environment illustrates the dedicated Gateway links.
The Gateways in Fig.(6) operate as pure commu-
nications servers, whose task is to manage the flow
of requested PDUs and interest states between SPPs.

Details can be found in Ref. [12]. Timing results for
Gateway operations in the 50K-vehicle runs are exam-
ined in Section 4.4.

The complete connectivity among Gateways in SF
Express (as in Fig.(6)) should be viewed as a provi-
sional expediency on the road to a 50K-vehicle sim-
ulation. With one exception noted below, this model
easily handled the inter-SPP traffic at rates up to 1,000
PDUs/sec. However, this initial model does not scale
well as the number of sites in Fig.(6) increases, and
has the additional defect that Gateway processors as-
sociated with low-activity links are a wasted resource.
Movement towards an architecture linking individual
SPPs by some form of multicasting (possibly ATM)
network should be explored.

4.2 The 50K-Vehicle Scenarios

The scenarios used by SF Express involve Blue
and Red forces laid down on the 300 km by 350 km
SAKI (Saudi Arabia, Kuwait, Iraq) terrain database.
The full complement, of vehicles is organized into a
number of opposing force groups. The relative pop-
ulations of vehicles types (tanks, trucks, helicopters,
...) and the actual laydowns of units and vehicles were
designed according to standard military doctrine [16]
including, for example, a roughly 2:1 superiority in
numbers for the attacking Blue forces.

Fig.(7) presents a schematic of the force deploy-
ments in one of the two scenarios used in the 50K-
vehicle runs. This “Version 2.1”7 laydown has about
42K Blue Vehicles and 21K Red Vehicles. Most of
the vehicles (about 85%) are trucks, as is realistic for
many actual military campaigns.

The large boxed areas in Fig.(7) show the assign-
ments of scenario elements to SPP platforms. The
evolution of the scenario over time is fairly simple: all
of the Blue forces move east and attack while the Red
forces sit and defend. This gives rise to intense interac-
tions along the dashed “Front Line” in Fig.(7). For the
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given Force<SPP assignments, this yields significant
data exchanges between the Ames and CEWES SP2s
and among the four 64-processor components of the
Caltech HP Exemplar. Additional non-fighting inter-
actions occur between some sets of adjacent Blue force
groups.

4.3 Porting and Practical Issues

Initially, SF Express was ported to the Intel
Paragons at Caltech. Extensive single-node runs were
required to begin understanding and assessing opti-
mization possibilities for the very large ModSAF code
base. Small multiple node runs identified key com-
munications libraries that would need modification.
Numerous problems were encountered (system call as-
sumptions, inadequate bounds checking, ... ). Solu-
tions developed during the single-node Paragon work
simplified subsequent ports to other platforms, al-
though OS-specific assumptions, awkward build proce-
dures, and occasional cross-compilation issues required
case-by-case treatments.

Once the SF Express code had matured to the
point where simulations with 1K-10K vehicles were be-
coming routine, initial heterogeneous multi-SPP tests
began. Coordination and synchronization of simula-
tion startup was quickly identified as a key issue, along
with management of the extensive scenario data files.
A number of intermediate-sized runs, involving 20K-
30K simulated vehicles at two or three sites, were crit-
ical first steps before attempting to commandeer six
SPPs for a block of intersecting dedicated time neces-
sary for the proposed 50K-vehicle exercise.

The large, 50K-vehicle runs with six SPPs spread
across the country involved substantial administrative
and operational issues. Various sites had different disk
policies, accounting mechanisms, usage models, and
schedulers. Ultimately, the success of the large runs
resulted from moderate to significant system admin-
istration intervention, competent system support per-
sonnel, and numerous phone calls. While this was ac-
ceptable for a demonstration, it is clearly inadequate
for a production model. Many of the initial Globus
activities described in Section 5 focus on these opera-
tional issues.

4.4 Inter-SPP Highlights of the 50K Runs

The performance issues for the metacomputing
model of Fig.(6) center on data movement through the
Gateway nodes. The results presented in this section
demonstrate that communications levels were easily
managed, with one (essentially expected) Paragon ex-
ception.

A word on the configuration of the HP Exemplar
machines is in order here. At the time of the 50K

runs, the Caltech machine was available only as four
independent 64-processor machines (labelled “HP /Cj”
below); it is now a single 256-processor system. In
contrast, the 128-processor Exemplar at the Convex
site (“HP/Tx”) was configured as a single system.

4.4.1 Results from the Version 2.1 Scenarios

Table 2 summarizes inter-SPP data rates for the V2.1
scenario run. The rows and columns are labelled by
SPP site; entries are in Kbytes/sec. Blank entries rep-
resent links with rates of less than 0.5 Kbytes/sec.
Many of the RNA<RNA communication links
have no appreciable activity. This is due to the ge-
ographic separation of the Force groups in Fig.(7)
and additional restrictions on broadcast PDUs, as dis-
cussed in Refs.[11],[12]. The communication model
running on Ames and CEWES retains a significant
level of simulation-wide broadcast PDUs, giving rise
to the constant “background” data rates evident in
the bottom two rows of Table 2. The values in Table 2
show the rates at which data are sent from the “Row
SPP” to the “Column SPP.” Due to dropped packets,
these are not the same as the rate at which data are
received by the Column SPPs, but they are generally
close. The exceptions involved links to ORNL, where
packet loss was often severe. In the worst case,

MHPCC  Sends
ORNL Receives

63.9 Kbytes/sec to ORNL
7.9 Kbytes/sec from MHPCC

With the exception of communications to ORNL, the
number of dropped UDP packets within the Version
2.1 runs is small, and well within the tolerable range
for ModSAF.

Table 3 contains a detailed look at three of the
more active inter-SPP links from Table 2:

HP/Tx & MHPCC: Successful, moder-
ately high bandwidth communications
between machines on a Wide-Area Net-
work.

MHPCC < ORNL: Saturated/Failed
communications between machines on a
Wide-Area Network.

HP/C1 < HP/C2: Successful communi-
cations between machines on a Local-
Area Network.

The “PDU Busy” rows list the fraction of (wall clock)
time spent in PDU communications within the SPP
and through the Gateway to the remote SPP. The last
two rows give the mean times for PDU bundle com-
munications across the network. The UDP-ethernet



Table 2: Inter-SPP Communications Rates for the V2.1 Scenario Large-Scale Metacomputing Runs

HP/CO HP/C1 HP/C2 HP/C3 ORNL MHPCC HP/Tx
HP/CO - 20.7 35.1
HP/C1 23.9 - 15.9 14.8 16.1
HP/C2 64.2 - 15.3
HP/C3 18.4 5.8 -
ORNL - 63.9
MHPCC 22.2 - 67.2
HP/Tx 3.7 21.0 169.0 -
AMES 3.3 33 33 3.3 33 3.3 33
CEWES | 6.3 6.3 6.3 6.3 17.6 6.3 6.2

Table 3: Details of Gateway Performance on Three Busy Links of the V2.1 SF Express Run

Local SPP HP/Tx MHPCC | ORNL MHPCC | HP/C1 HP/C2
Remote SPP MHPCC HP/Tx | MHPCC ORNL | HP/C2 HP/C1
Local PDU Busy 0.168 0.074 0.041 0.050 0.023 0.014
Remote PDU Busy 0.147 0.080 0.926 0.032 0.031 0.030
Read Time [msec] 0.60 0.63 22.26 0.77 0.61 0.60
Write Time [msec] 0.97 0.28 27.52 0.26 0.45 0.34

reads and writes on the ORNL Paragon are about 30
times slower than on the other platforms, leading to an
overwhelmed Gateway and the significant data losses
noted above.

It should be stressed that no attempts were made
to optimize network communications in these initial
50K runs. Networks used included ESnet, LosNettos,
NREN, DREN, ANSnet, and commodity providers.
Fig.(8) shows a partial network map of communica-
tions links to the Caltech site, with shaded ellipses
representing the various network domains. A message
from Caltech to MHPCC visits 14 routers, while a re-
turn message travels through 12. Clearly, the SF Ex-
press 50K-vehicle runs did not use an overly optimized
network.

The results in Tables 2 and 3 indicate that some-
thing more aggressive than simple UDP/IP ethernet
will be needed to use successfully the ORNL Paragon
in a large scale, distributed simulation. As was noted
in Section 4.1, the RNA Gateway strategy can accom-
modate various transport mechanisms.

5 An Integrated Metacomputing Envi-

ronment Using Globus

The Globus Project [7], [8] is developing a basic
software infrastructure to support applications that
need and/or are capable of using geographically dis-
tributed computational and information resources. A

key element of Globus is the design and implemen-
tation of a distributed supercomputing infrastructure
toolkit that provides an integrated set of services in
five key areas:

1. Communications: The Nexus communications
library provides message-delivery services for a
variety of communications models in a manner
that is cognizant of network quality of service pa-
rameters.

2. Information: The Metacomputing Directory
Service (MDS) offers a uniform method for ob-
taining real-time information on system status
and structure.

3. Resource Location/Allocation: The Global
Resource Allocation Manager (GRAM) provides
mechanisms for declaring application resource re-
quirements, identifying and scheduling appropri-
ate resources, as well as initiating and managing
the application on these resources. The GRAM
can be thought of as a low-level scheduler Appli-
cation Program Interface (API).

4. Security: The Globus system includes a number
of basic security services (e.g., authentication and
authorization), enabling sophisticated application
specific security mechanisms and single sign-on
functionality.
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5. Data Access: Mechanisms are provided for
high-speed remote access to persistent storage.

5.1 Benefits of the Globus Toolkit

The modules within the Globus Toolkit directly
address a number of problems uncovered during the
initial, manually operated SF Express metacomputing
runs.

The Nexus library provides a “resource aware”
implementation of communication tasks (e.g., data ex-
changes between the Gateway nodes of Fig.(6)), using
the best available communications mechanism (UDP
over IP, HIPPI, ATM, etc.). Simple automatic selec-
tion rules or user-guided directives determine the ap-
propriate communications method, with selections dy-
namically dependent on the status of the available net-
work services. These features are particularly useful
for the communications links between Gateway pro-
cessors, in order to avoid bandwidth saturation, as
was observed in Section 3 for the ORNL&MHPCC
link. The communications layer provides efficient im-
plementations of native communication methods, in-
cluding message passing, multicast, distributed shared
memory, remote procedure calls, etc. The selected
method must be aware of Quality of Service (QoS) pa-
rameters, such as reliability, bandwidth, and latency.
Intelligent, performance-based, application configura-
tion choices can be made to match the “currently avail-
able” execution environment, enabling the user to bet-

ter utilize shared resources and attain higher through-
put.

The MDS and GRAM elements of the Globus
toolkit address the broad problem of resource iden-
tification, allocation, and task execution within the
grid of available assets. The MDS provides an au-
tomated, “information-rich” approach to system con-
figuration, enabling intelligent automated resource al-
locations. MDS includes a data model to represent
dynamically changing capabilities of various parallel
computers and networks, so that tools and applica-
tions do not have to rely on stale or programmer-
supplied knowledge (e.g., use a dedicated HIPPI or
ATM node instead of garden variety UDP/IP).

Once the desired distributed assets have been
identified, GRAM provides a simple, uniform interface
to local resource allocations. In essence, GRAM en-
ables the coordinated startup of a metacomputing run
by a single “go” script that drives the participating
SPPs, attached displays, etc. This represents a sig-
nificant improvement over the existing environment,
in which the non-static differences among operating
systems and resource schedulers on various platforms
are coordinated by hand-crafted scripts (and prayers)
based on detailed knowledge of resource-specific usage
models. Globus services also provides periodic health
and status information for each job instantiation and
allows application-specific tools to hook into generic
health and status monitor services. This capability



would be an improvement over the existing SF Ex-
press method using separate monitoring tools on each
SPP.

Not all startup and job management concerns are
addressed with the use of a single script that starts
program execution on all resources. Determining and
staging required datasets is another concern. Staging
of data automatically and efficiently just prior to sim-
ulation time avoids a number of difficulties associated
with site-specific disk usage policies. For example, the
50K scenario datasets could not permanently reside on
the file systems of the SPPs used in the SF Express
runs, due to various quota limits and disk policies.
This situation necessitated tedious (and somewhat er-
ror prone) manual staging prior to the large runs.

Simulations to date have involved static assign-
ments of scenarios to SPPs, such that configuration
file preparation and data staging could occur prior
to SPP resource allocation. This approach typically
wastes disk space and does not allow the application
to take best advantage of the resources available. The
Data Access services (remote I/O calls) within Globus
allow high-speed remote access to persistent storage,
such as simulation scenarios and behavior files, po-
tentially saving vast amounts of disk space and fre-
quent user-intervention required to move large data
sets both before and after runs (possibly scheduled
arbitrarily). The more resource-aware an application
can become, the larger the window for adaptive and
optimal choices.

5.2 Initial Experiments with Globus

The coordinated startup capabilities of Globus
were successfully tested during two live demonstra-
tions at the November 1997 High Performance Net-
working and Computing Conference (SC97) in San
Jose. These experiments involved 824 processors on
SPPs at six sites, as shown in Fig.(9), simultaneously
displaying parts of the simulation on an Immersa-desk
in the Argonne National Laboratory booth on the
conference floor. Unlike the fairly conservative force
group assignments of the initial 50K-vehicle simula-
tions, these runs involved a more “interleaved” assign-
ment of scenario files to SPPs, as shown in Fig.(9).
This was done in order to provide more stressing tests
of inter-SPP communications. The overall simula-
tion involved about 40K vehicles (about 50K ModSAF
entities). The important new aspects using GRAM
specifications to drive the simulation were successfully
demonstrated.

6 Accomplishments and Future Direc-
tions

The multi-SPP runs in August 1997 surpassed the
project goal of a 50,000-vehicle simulation on a het-
erogeneous collection of SPPs and validated the over-
all SF Express concept. The ExInit team generated a
collection of sound military scenarios featuring intense,
quick interactions (and fighting) within the one-hour
time frame of the runs.

Problem areas in the single-SPP SF Express code
seemed to center on, not surprisingly, the ModSAF
simulation engine itself. Of the hundreds of thousands
of lines of ModSAF source code, less than five percent
of the libraries were modified to accommodate RNA.
The core simulation code was purposely left mostly
alone, due not only to project scope, but also to de-
couple performance of the communications architec-
ture from the driving simulation engine. Among other
issues, simple profiling determined that ModSAF ve-
hicle table manipulations consumed a substantial frac-
tion of total CPU time. Possible solutions for expen-
sive ordered list operations are noted in Ref.[17].

Problems in the multi-SPP runs of Section 4 were
largely operational, arising from the differing environ-
ments at the six SPP sites. The Globus experiments
described in Section 5 can be viewed as the first steps
toward a more user-friendly robust system.

An attractive near-term direction involves a
greater exploitation of the unified resource information
services, resource location and allocation services, and
data access modules within Globus to eliminate much
of the configuration file mechanisms within SF Express
and optimize runtime parameters. Using the currently
deployed Globus services, initialization and execution
of a large simulation would proceed roughly as follows:

1. The user specifies the location of the simulation
data and the desired simulation size from a single
place (e.g., console or file).

2. MDS evaluates the request and locates appro-
priate resources (with the MDS databases aug-
mented to understand information on the inher-
ent simulation capabilities of the individual plat-
forms).

3. Once the appropriate computational assets are al-
located, GRAM is used to start the distributed
simulation and to exchange runtime system con-
figuration information among the participants.

4. Using the system configuration information from
GRAM, each SPP takes responsibility for a spe-
cific subset of the simulation scenario files, retriev-
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Figure 9: Version 2.1 scenario element assignments for the initial tests with Globus

ing these data automatically from the staging area
using the Globus Data Access services.

In this model, user input is largely restricted to
the high-level specification of the problem itself (i.e.,
the simulation scenarios), with Globus managing all
pragmatic issues of resource allocation, data staging,
job management, and network connectivity needed in
order to meet the user specified requirements (which
could well include additional constraints, such as re-
quired network bandwidths).

The construction of this Globus-directed meta-
computing model is a realistic near-term goal. Modifi-
cations within the existing RNA code base of Ref.[12]
would largely involve generalizations of the Gateway
communications procedures to use portable Nexus
routines in place of socket calls. Additional new logic
would be needed within the single-SPP initialization
sequence to support runtime assignments of scenarios
to SPPs, based on configuration data from GRAM.
(Neither of these tasks is seen as being particularly dif-
ficult.) This system would become the next-generation
SF Express proof-of-concept demonstration, with in-
telligent resource allocation, simulation startup, and
data management all done in a simple, user-friendly
manner.
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